measure position accurately, you will instead knock the electron out of its orbit. Each measurement of the electron's position will find it to be in a definite location somewhere near the nucleus. Repeated measurements reveal a cloud of probability like that in the figure, with each speck the location determined by a single measurement. There is not a well-defined, circular-orbit type of distribution. Nature again proves to be different on a small scale than on a macroscopic scale.

Figure 22.15 The ground state of a hydrogen atom has a probability cloud describing the position of its electron. The probability of finding the electron is proportional to the darkness of the cloud. The electron can be closer or farther than the Bohr radius, but it is very unlikely to be a great distance from the nucleus.

Virtual Physics

Models of the Hydrogen Atom

Click to view content (https://www.openstax.org/l/28atom_model)

How did scientists figure out the structure of atoms without looking at them? Try out different models by shooting light at the atom. Use this simulation to see how the prediction of the model matches the experimental results.

Check Your Understanding

- 1. Alpha particles are positively charged. What influence did their charge have on the gold foil experiment?
 - a. The positively charged alpha particles were attracted by the attractive electrostatic force from the positive nuclei of the gold atoms.
 - b. The positively charged alpha particles were scattered by the attractive electrostatic force from the positive nuclei of the gold atoms.
 - c. The positively charged alpha particles were scattered by the repulsive electrostatic force from the positive nuclei of the gold atoms.
 - d. The positively charged alpha particles were attracted by the repulsive electrostatic force from the positive nuclei of the gold atoms.

22.2 Nuclear Forces and Radioactivity

Section Learning Objectives

By the end of this section, you will be able to do the following:

- Describe the structure and forces present within the nucleus
- Explain the three types of radiation
- Write nuclear equations associated with the various types of radioactive decay

Section Key Terms

alpha decay	atomic number	beta decay	gamma decay	Geiger tube
isotope	mass number	nucleons	radioactive	radioactive decay

radioactivity scintillator strong nuclear force transmutation

There is an ongoing quest to find the substructures of matter. At one time, it was thought that atoms would be the ultimate substructure. However, just when the first direct evidence of atoms was obtained, it became clear that they have a substructure and a tiny nucleus. The nucleus itself has spectacular characteristics. For example, certain nuclei are unstable, and their decay emits radiations with energies millions of times greater than atomic energies. Some of the mysteries of nature, such as why the core of Earth remains molten and how the Sun produces its energy, are explained by nuclear phenomena. The exploration of radioactivity and the nucleus has revealed new fundamental particles, forces, and conservation laws. That exploration has evolved into a search for further underlying structures, such as quarks. In this section, we will explore the fundamentals of the nucleus and nuclear radioactivity.

The Structure of the Nucleus

At this point, you are likely familiar with the neutron and proton, the two fundamental particles that make up the nucleus of an atom. Those two particles, collectively called **nucleons**, make up the small interior portion of the atom. Both particles have nearly the same mass, although the neutron is about two parts in 1,000 more massive. The mass of a proton is equivalent to 1,836 electrons, while the mass of a neutron is equivalent to that of 1,839 electrons. That said, each of the particles is significantly more massive than the electron.

When describing the mass of objects on the scale of nucleons and atoms, it is most reasonable to measure their mass in terms of atoms. The atomic mass unit (u) was originally defined so that a neutral carbon atom would have a mass of exactly 12 u. Given that protons and neutrons are approximately the same mass, that there are six protons and six neutrons in a carbon atom, and that the mass of an electron is minuscule in comparison, measuring this way allows for both protons and neutrons to have masses close to 1 u. Table 22.1 shows the mass of protons, neutrons, and electrons on the new scale.

TIPS FOR SUCCESS

For most conceptual situations, the difference in mass between the proton and neutron is insubstantial. In fact, for calculations that require fewer than four significant digits, both the proton and neutron masses may be considered equivalent to one atomic mass unit. However, when determining the amount of energy released in a nuclear reaction, as in Equation 22.40, the difference in mass cannot be ignored.

Another other useful mass unit on the atomic scale is the MeV/c^2 . While rarely used in most contexts, it is convenient when one uses the equation $E = mc^2$, as will be addressed later in this text.

	Proton Mass	Neutron Mass	Electron Mass
Kilograms (kg)	1.673×10^{-27}	1.675×10^{-27}	9.109×10^{-31}
Atomic mass units (u)	1.007	1.009	5.486×10^{-4}

Table 22.1 Atomic Masses for Multiple Units

To more completely characterize nuclei, let us also consider two other important quantities: the atomic number and the mass number. The **atomic number**, *Z*, represents the number of protons within a nucleus. That value determines the elemental quality of each atom. Every carbon atom, for instance, has a *Z* value of 6, whereas every oxygen atom has a *Z* value of 8. For clarification, only oxygen atoms may have a *Z* value of 8. If the *Z* value is not 8, the atom cannot be oxygen.

The **mass number**, *A*, represents the total number of protons and neutrons, or nucleons, within an atom. For an ordinary carbon atom the mass number would be 12, as there are typically six neutrons accompanying the six protons within the atom. In the case of carbon, the mass would be exactly 12 u. For oxygen, with a mass number of 16, the atomic mass is 15.994915 u. Of course, the difference is minor and can be ignored for most scenarios. Again, because the mass of an electron is so small compared to the nucleons, the mass number and the atomic mass can be essentially equivalent. Figure 22.16 shows an example of Lithium-7, which has an atomic number of 3 and a mass number of 7.

How does the mass number help to differentiate one atom from another? If each atom of carbon has an atomic number of 6,

then what is the value of including the mass number at all? The intent of the mass number is to differentiate between various isotopes of an atom. The term **isotope** refers to the variation of atoms based upon the number of neutrons within their nucleus. While it is most common for there to be six neutrons accompanying the six protons within a carbon atom, it is possible to find carbon atoms with seven neutrons or eight neutrons. Those carbon atoms are respectively referred to as carbon-13 and carbon-14 atoms, with their mass numbers being their primary distinction. The isotope distinction is an important one to make, as the number of neutrons within an atom can affect a number of its properties, not the least of which is nuclear stability.

Figure 22.16 Lithium-7 has three protons and four neutrons within its nucleus. As a result, its mass number is 7, while its atomic number is 3. The actual mass of the atom is 7.016 u. Lithium 7 is an isotope of lithium.

To more easily identify various atoms, their atomic number and mass number are typically written in a form of representation called the nuclide. The nuclide form appears as follows: ${}^{Z}_{A}X_{N}$, where X is the atomic symbol and N represents the number of neutrons.

Let us look at a few examples of nuclides expressed in the ${}^{Z}_{A}X_{N}$ notation. The nucleus of the simplest atom, hydrogen, is a single proton, or ${}^{1}_{1}$ H (the zero for no neutrons is often omitted). To check the symbol, refer to the periodic table—you see that the atomic number Z of hydrogen is 1. Since you are given that there are no neutrons, the mass number A is also 1. There is a scarce form of hydrogen found in nature called *deuterium*; its nucleus has one proton and one neutron and, hence, twice the mass of common hydrogen. The symbol for deuterium is, thus, ${}^{2}_{1}$ H₂. An even rarer—and radioactive—form of hydrogen is called *tritium*, since it has a single proton and two neutrons, and it is written ${}^{3}_{1}$ H₂. The three varieties of hydrogen have nearly identical chemistries, but the nuclei differ greatly in mass, stability, and other characteristics. Again, the different nuclei are referred to as isotopes of the same element.

There is some redundancy in the symbols A, X, Z, and N. If the element X is known, then Z can be found in a periodic table. If both A and X are known, then N can also be determined by first finding Z; then, N = A - Z. Thus the simpler notation for nuclides is

 $^{A}X,$

22.34

which is sufficient and is most commonly used. For example, in this simpler notation, the three isotopes of hydrogen are 1 H, 2 H, and 3 H. For 238 U, should we need to know, we can determine that Z = 92 for uranium from the periodic table, and thus, N = 238 - 92 = 146.

Radioactivity and Nuclear Forces

In 1896, the French physicist Antoine Henri Becquerel (1852–1908) noticed something strange. When a uranium-rich mineral called pitchblende was placed on a completely opaque envelope containing a photographic plate, it darkened spots on the photographic plate. Becquerel reasoned that the pitchblende must emit invisible rays capable of penetrating the opaque material. Stranger still was that no light was shining on the pitchblende, which means that the pitchblende was emitting the invisible rays continuously without having any energy input! There is an apparent violation of the law of conservation of energy, one that scientists can now explain using Einstein's famous equation $E = mc^2$. It was soon evident that Becquerel's rays originate in the nuclei of the atoms and have other unique characteristics.

To this point, most reactions you have studied have been chemical reactions, which are reactions involving the electrons

surrounding the atoms. However, two types of experimental evidence implied that Becquerel's rays did not originate with electrons, but instead within the nucleus of an atom.

First, the radiation is found to be only associated with certain elements, such as uranium. Whether uranium was in the form of an element or compound was irrelevant to its radiation. In addition, the presence of radiation does not vary with temperature, pressure, or ionization state of the uranium atom. Since all of those factors affect electrons in an atom, the radiation cannot come from electron transitions, as atomic spectra do.

The huge energy emitted during each event is the second piece of evidence that the radiation cannot be atomic. Nuclear radiation has energies on the order of 10⁶ eV per event, which is much greater than typical atomic energies that are a few eV, such as those observed in spectra and chemical reactions, and more than ten times as high as the most energetic X-rays.

But why would reactions within the nucleus take place? And what would cause an apparently stable structure to begin emitting energy? Was there something special about Becquerel's uranium-rich pitchblende? To answer those questions, it is necessary to look into the structure of the nucleus. Though it is perhaps surprising, you will find that many of the same principles that we observe on a macroscopic level still apply to the nucleus.

Nuclear Stability

A variety of experiments indicate that a nucleus behaves something like a tightly packed ball of nucleons, as illustrated in Figure 22.17. Those nucleons have large kinetic energies and, thus, move rapidly in very close contact. Nucleons can be separated by a large force, such as in a collision with another nucleus, but strongly resist being pushed closer together. The most compelling evidence that nucleons are closely packed in a nucleus is that the radius of a nucleus, *r*, is found to be approximately

$$=r_{o}A^{\frac{1}{3}},$$
 22.35

where $r_o = 1.2$ femtometer (fm) and A is the mass number of the nucleus.

Note that $r^3 \propto A$. Since many nuclei are spherical, and the volume of a sphere is $V = \left(\frac{4}{3}\right)\pi r^3$, we see that $V \propto A$ —that is, the volume of a nucleus is proportional to the number of nucleons in it. That is what you expect if you pack nucleons so close that there is no empty space between them.

Figure 22.17 Nucleons are held together by nuclear forces and resist both being pulled apart and pushed inside one another. The volume of the nucleus is the sum of the volumes of the nucleons in it, here shown in different colors to represent protons and neutrons.

So what forces hold a nucleus together? After all, the nucleus is very small and its protons, being positive, should exert tremendous repulsive forces on one another. Considering that, it seems that the nucleus would be forced apart, not together!

The answer is that a previously unknown force holds the nucleus together and makes it into a tightly packed ball of nucleons. This force is known as the **strong nuclear force**. The strong force has such a short range that it quickly fall to zero over a distance of only 10⁻¹⁵ meters. However, like glue, it is very strong when the nucleons get close to one another.

The balancing of the electromagnetic force with the nuclear forces is what allows the nucleus to maintain its spherical shape. If, for any reason, the electromagnetic force should overcome the nuclear force, components of the nucleus would be projected outward, creating the very radiation that Becquerel discovered!

Understanding why the nucleus would break apart can be partially explained using <u>Table 22.2</u>. The balance between the strong nuclear force and the electromagnetic force is a tenuous one. Recall that the attractive strong nuclear force exists between any two nucleons and acts over a very short range while the weaker repulsive electromagnetic force only acts between protons, although over a larger range. Considering the interactions, an imperfect balance between neutrons and protons can result in a nuclear reaction, with the result of regaining equilibrium.

	Range of Force	Direction	Nucleon Interaction	Magnitude of Force
Electromagnetic Force	Long range, though decreasing by 1/r ²	Repulsive	Proton –proton repulsion	Relatively small
Strong Nuclear Force	Very short range, essentially zero at 1 femtometer	Attractive	Attraction between any two nucleons	100 times greater than the electromagnetic force

Table 22.2 Comparing the Electromagnetic and Strong Forces

The radiation discovered by Becquerel was due to the large number of protons present in his uranium-rich pitchblende. In short, the large number of protons caused the electromagnetic force to be greater than the strong nuclear force. To regain stability, the nucleus needed to undergo a nuclear reaction called **alpha** (α) **decay**.

The Three Types of Radiation

Radioactivity refers to the act of emitting particles or energy from the nucleus. When the uranium nucleus emits energetic nucleons in Becquerel's experiment, the radioactive process causes the nucleus to alter in structure. The alteration is called **radioactive decay**. Any substance that undergoes radioactive decay is said to be **radioactive**. That those terms share a root with the term *radiation* should not be too surprising, as they all relate to the transmission of energy.

Alpha Decay

Alpha decay refers to the type of decay that takes place when too many protons exist in the nucleus. It is the most common type of decay and causes the nucleus to regain equilibrium between its two competing internal forces. During alpha decay, the nucleus ejects two protons and two neutrons, allowing the strong nuclear force to regain balance with the repulsive electromagnetic force. The nuclear equation for an alpha decay process can be shown as follows.

22.36

Figure 22.18 A nucleus undergoes alpha decay. The alpha particle can be seen as made up of two neutrons and two protons, which constitute a helium-4 atom.

Three things to note as a result of the above equation:

- By ejecting an alpha particle, the original nuclide decreases in atomic number. That means that Becquerel's uranium nucleus, upon decaying, is actually transformed into thorium, two atomic numbers lower on the periodic table! The process of changing elemental composition is called transmutation.
- 2. Note that the two protons and two neutrons ejected from the nucleus combine to form a helium nucleus. Shortly after decay, the ejected helium ion typically acquires two electrons to become a stable helium atom.
- 3. Finally, it is important to see that, despite the elemental change, physical conservation still takes place. The mass number of the new element and the alpha particle together equal the mass number of the original element. Also, the net charge of all particles involved remains the same before and after the transmutation.

Beta Decay

Like alpha decay, **beta** (β) **decay** also takes place when there is an imbalance between neutrons and protons within the nucleus. For beta decay, however, a neutron is transformed into a proton and electron or vice versa. The transformation allows for the total mass number of the atom to remain the same, although the atomic number will increase by one (or decrease by one). Once again, the transformation of the neutron allows for a rebalancing of the strong nuclear and electromagnetic forces. The nuclear

equation for a beta decay process is shown below.

$${}^{A}_{Z}X_{N} \rightarrow {}^{A}_{Z+1}Y_{N-1} + e + v$$

The symbol v in the equation above stands for a high-energy particle called the neutrino. A nucleus may also emit a positron, and in that case Z decreases and N increases. It is beyond the scope of this section and will be discussed in further detail in the chapter on particles. It is worth noting, however, that the mass number and charge in all beta-decay reactions are conserved.

Figure 22.19 A nucleus undergoes beta decay. The neutron splits into a proton, electron, and neutrino. This particular decay is called β^- decay.

Gamma Decay

Gamma decay is a unique form of radiation that does not involve balancing forces within the nucleus. Gamma decay occurs when a nucleus drops from an excited state to the ground state. Recall that such a change in energy state will release energy from the nucleus in the form of a photon. The energy associated with the photon emitted is so great that its wavelength is shorter than that of an X-ray. Its nuclear equation is as follows.

22.37

Figure 22.20 A nucleus undergoes gamma decay. The nucleus drops in energy state, releasing a gamma ray.

WORKED EXAMPLE

Creating a Decay Equation

Write the complete decay equation in ${}^{A}_{Z}X_{N}$ notation for beta decay producing ${}^{137}\text{Ba}$. Refer to the periodic table for values of Z.

Strategy

Beta decay results in an increase in atomic number. As a result, the original (or parent) nucleus, must have an atomic number of one fewer proton.

Solution

The equation for beta decay is as follows

$${}^{A}_{Z}X_{N} \to {}^{A}_{Z+1}Y_{N-1} + e + v.$$
 22.38

Considering that barium is the product (or daughter) nucleus and has an atomic number of 56, the original nucleus must be of an atomic number of 55. That corresponds to cesium, or Cs.

$$^{137}_{55}$$
Cs_N $\rightarrow ^{137}_{56}$ Ba_{N-1} + e + v 22.39

The number of neutrons in the parent cesium and daughter barium can be determined by subtracting the atomic number from the mass number (137 – 55 for cesium, 137 – 56 for barium). Substitute those values for the N and N - I subscripts in the above equation.

$${}^{137}_{55}\text{Cs}_{82} \rightarrow {}^{137}_{56}\text{Ba}_{81} + e + v$$
22.40

Discussion

The terms parent and daughter nucleus refer to the reactants and products of a nuclear reaction. The terminology is not just used in this example, but in all nuclear reaction examples. The cesium-137 nuclear reaction poses a significant health risk, as its chemistry is similar to that of potassium and sodium, and so it can easily be concentrated in your cells if ingested.

WORKED EXAMPLE

Alpha Decay Energy Found from Nuclear Masses

Find the energy emitted in the α decay of ²³⁹Pu.

Strategy

Nuclear reaction energy, such as released in α decay, can be found using the equation $E = mc^2$. We must first find Δm , the difference in mass between the parent nucleus and the products of the decay.

The mass of pertinent particles is as follows

²³⁹Pu: 239.052157 u

²³⁵U: 235.043924 u

⁴He: 4.002602 u.

Solution

The decay equation for ²³⁹Pu is

239
Pu $\rightarrow ^{235}$ U + ⁴He. 22.41
post between the parent and daughter nuclei.
 $(^{239}$ D) = ($^{(239}$ U) + $^{(411)}$)

Determine the amount of mass lo

$$\Delta m = m (^{239} P u) - (m (^{239} U) + m (^{4} He))$$

$$\Delta m = 239.052157 u - (235.043924 u + 4.002602 u)$$

$$\Delta m = 0.0005631 u$$

22.42

Now we can find *E* by entering Δm into the equation.

$$E = (\Delta m) c^2 = (0.005631 \text{ u}) c^2$$
22.43

And knowing that $1 \text{ u} = 931.5 \text{ meV}/c^2$, we can find that

$$E = (0.005631) (931.5 \text{ MeV}/c^2) (c^2) = 5.25 \text{ MeV}.$$
 22.44

Discussion

The energy released in this α decay is in the MeV range, about 10⁶ times as great as typical chemical reaction energies, consistent with previous discussions. Most of the energy becomes kinetic energy of the α particle (or ⁴He nucleus), which moves away at high speed.

The energy carried away by the recoil of the ²³⁵U nucleus is much smaller, in order to conserve momentum. The ²³⁵U nucleus can be left in an excited state to later emit photons (γ rays). The decay is spontaneous and releases energy, because the products have less mass than the parent nucleus.

Properties of Radiation

The charges of the three radiated particles differ. Alpha particles, with two protons, carry a net charge of +2. Beta particles, with one electron, carry a net charge of -1. Meanwhile, gamma rays are solely photons, or light, and carry no charge. The difference

in charge plays an important role in how the three radiations affect surrounding substances.

Alpha particles, being highly charged, will quickly interact with ions in the air and electrons within metals. As a result, they have a short range and short penetrating distance in most materials. Beta particles, being slightly less charged, have a larger range and larger penetrating distance. Gamma rays, on the other hand, have little electric interaction with particles and travel much farther. Two diagrams below show the importance of difference in penetration. <u>Table 22.3</u> shows the distance of radiation penetration, and <u>Figure 22.21</u> shows the influence various factors have on radiation penetration distance.

Type of Radiation	Range
lpha particles	A sheet of paper, a few cm of air, fractions of a millimeter of tissue
eta particles	A thin aluminum plate, tens of cm of tissue
γ rays	Several cm of lead, meters of concrete

Table 22.3 Comparing Ranges of Radioactive Decay

Figure 22.21 The penetration or range of radiation depends on its energy, the material it encounters, and the type of radiation. (a) Greater energy means greater range. (b) Radiation has a smaller range in materials with high electron density. (c) Alphas have the smallest range, betas have a greater range, and gammas have the greatest range.

O LINKS TO PHYSICS

Radiation Detectors

The first direct detection of radiation was Becquerel's darkened photographic plate. Photographic film is still the most common detector of ionizing radiation, being used routinely in medical and dental X-rays. Nuclear radiation can also be captured on film, as seen in Figure 22.22. The mechanism for film exposure by radiation is similar to that by photons. A quantum of energy from a radioactive particle interacts with the emulsion and alters it chemically, thus exposing the film. Provided the radiation has more than the few eV of energy needed to induce the chemical change, the chemical alteration will occur. The amount of film darkening is related to the type of radiation and amount of exposure. The process is not 100 percent efficient, since not all incident radiation interacts and not all interactions produce the chemical change.

Figure 22.22 Film badges contain film similar to that used in this dental X-ray film. It is sandwiched between various absorbers to determine the penetrating ability of the radiation as well as the amount. Film badges are worn to determine radiation exposure. (credit: Werneuchen, Wikimedia Commons)

Another very common radiation detector is the **Geiger tube**. The clicking and buzzing sound we hear in dramatizations and documentaries, as well as in our own physics labs, is usually an audio output of events detected by a Geiger counter. These relatively inexpensive radiation detectors are based on the simple and sturdy Geiger tube, shown schematically in Figure 22.23. A conducting cylinder with a wire along its axis is filled with an insulating gas so that a voltage applied between the cylinder and wire produces almost no current. Ionizing radiation passing through the tube produces free ion pairs that are attracted to the wire and cylinder, forming a current that is detected as a count. Not every particle is detected, since some radiation can pass through without producing enough ionization. However, Geiger counters are very useful in producing a prompt output that reveals the existence and relative intensity of ionizing radiation.

Figure 22.23 (a) Geiger counters such as this one are used for prompt monitoring of radiation levels, generally giving only relative intensity and not identifying the type or energy of the radiation. (credit: Tim Vickers, Wikimedia Commons) (b) Voltage applied between the cylinder and wire in a Geiger tube affects ions and electrons produced by radiation passing through the gas-filled cylinder. Ions move toward the cylinder and electrons toward the wire. The resulting current is detected and registered as a count.

Another radiation detection method records light produced when radiation interacts with materials. The energy of the radiation is sufficient to excite atoms in a material that may fluoresce, such as the phosphor used by Rutherford's group. Materials called **scintillators** use a more complex process to convert radiation energy into light. Scintillators may be liquid or solid, and they can

be very efficient. Their light output can provide information about the energy, charge, and type of radiation. Scintillator light flashes are very brief in duration, allowing the detection of a huge number of particles in short periods of time. Scintillation detectors are used in a variety of research and diagnostic applications. Among those are the detection of the radiation from distant galaxies using satellite-mounted equipment and the detection of exotic particles in accelerator laboratories.

Virtual Physics

Beta Decay

Click to view content (https://www.openstax.org/l/21betadecayvid)

Watch beta decay occur for a collection of nuclei or for an individual nucleus. With this applet, individuals or groups of students can compare half-lives!

Check Your Understanding

- 2. What leads scientists to infer that the nuclear strong force exists?
 - a. A strong force must hold all the electrons outside the nucleus of an atom.
 - b. A strong force must counteract the highly attractive Coulomb force in the nucleus.
 - c. A strong force must hold all the neutrons together inside the nucleus.
 - d. A strong force must counteract the highly repulsive Coulomb force between protons in the nucleus.

22.3 Half Life and Radiometric Dating

Section Learning Objectives

By the end of this section, you will be able to do the following:

- Explain radioactive half-life and its role in radiometric dating
- · Calculate radioactive half-life and solve problems associated with radiometric dating

Section Key Terms

activity	becquerel	carbon-14 dating
decay constant	half-life	radioactive dating

Half-Life and the Rate of Radioactive Decay

Unstable nuclei decay. However, some nuclides decay faster than others. For example, radium and polonium, discovered by Marie and Pierre Curie, decay faster than uranium. That means they have shorter lifetimes, producing a greater rate of decay. Here we will explore half-life and activity, the quantitative terms for lifetime and rate of decay.

Why do we use the term like *half-life* rather than *lifetime*? The answer can be found by examining Figure 22.24, which shows how the number of radioactive nuclei in a sample decreases with time. The time in which half of the original number of nuclei decay is defined as the **half-life**, $t_{1/2}$. After one half-life passes, half of the remaining nuclei will decay in the next half-life. Then, half of that amount in turn decays in the following half-life. Therefore, the number of radioactive nuclei decreases from N to N/2 in one half-life, to N/4 in the next, to N/8 in the next, and so on. Nuclear decay is an example of a purely statistical process.

TIPS FOR SUCCESS

A more precise definition of half-life is that each nucleus has a 50 percent chance of surviving for a time equal to one halflife. If an individual nucleus survives through that time, it still has a 50 percent chance of surviving through another half-life. Even if it happens to survive hundreds of half-lives, it still has a 50 percent chance of surviving through one more. Therefore, the decay of a nucleus is like random coin flipping. The chance of heads is 50 percent, no matter what has happened before. The probability concept aligns with the traditional definition of half-life. Provided the number of nuclei is reasonably large, half of the original nuclei should decay during one half-life period.